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Abstract. We analyze the relaxation behavior of a bistable system when the background temperature
profile is inhomogeneous due to the presence of a localized hot region (blowtorch) on one side of the
potential barrier. Since the diffusion equation for inhomogeneous medium is model-dependent, we consider
two physical models to study the kinetics of such system. Using a conventional stochastic method, we
obtain the escape and equilibration rates of the system for the two physical models. For both models, we
find that the hot region enhances the escape rate from the well where it is placed while it retards the
escape rate from the other well. However, the value of the escape rate from the well where the hot region
is placed differs for the two models while that of the escape rate from the other well is identical for both.
This work, for the first time, gives a detailed report of the similarities and differences of the escape rates
and, hence, exposes the common and distinct features of the two known physical models in determining
the way the bistable system relaxes.

PACS. 02.50.Ey Stochastic processes – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion – 05.40.Jc Brownian motion – 05.60.-k Transport processes

1 Introduction

A system in contact with a uniform thermal bath set-
tles around its equilibrium state or, in general, around
its competing equilibrium states determined by the Boltz-
mann factor exp(−E/kBT ). This simple fact does not hold
when the bath temperature is nonuniform and was explic-
itly argued by Landauer in his now influential paper [1]
on relative stability, i.e. relative occupation, of the com-
peting local energy minima for a system far from equilib-
rium. He pointed out the globally determining role played
by the nonequilibrium kinetics of the unstable interme-
diate states even as these are very rarely populated. In
particular, for a system with two unequally competing
equilibrium states, i.e. an asymmetric bistable potential,
he showed that the application of localized heating at a
point on the reaction coordinate lying between the lower
energy minimum and the potential barrier maximum can
raise the relative population of the higher-lying energy
minimum above that given by the Boltzmann factor. This
is the so-called blowtorch effect [1] that arises due to the
nonuniform thermal bath. It generalizes the problem of es-
cape of a Brownian particle over a potential barrier under
the influence of equilibrium thermal fluctuations, studied
originally by Kramers [2], to the case of nonuniform tem-
perature along the reaction coordinate.

It is known that the diffusion equation describing mo-
tion of a Brownian particle in a homogeneous medium
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with temperature T and under an external potential V (x)
is given by

∂

∂t
P (x, t) = µ

∂

∂x
(V ′(x)P (x, t)) +D

∂2

∂x2
P (x, t), (1)

where P (x, t) is the probability density of the particle at
position x at time t, µ is the mobility, D is the diffusion co-
efficient such that D = kBTµ (kB is Boltzmann constant),
and V ′ ≡ dV

dx . However, when one wants to investigate the
blowtorch effect, the medium is inhomogeneous due to the
temperature nonuniformity. Accordingly, one has to gen-
eralize the diffusion equation, equation (1), to account for
effects arising from inhomogeneous temperature or more
generally inhomogeneous medium. Unfortunately, the dif-
fusion equation describing motion of a Brownian particle
in an inhomogeneous medium has been controversial for
a long time [3]. The controversy was whether one should
take the diffusion term to be

∂2

∂x2
(D(x)P (x, t)) ,

or
∂

∂x

(
D(x)

∂

∂x
P (x, t)

)
,

or something else. It was more or less settled after van
Kampen, taking three different physical models with in-
homogeneous media, arrived at three different diffusion
equations [4–6]. This exposed the model-dependent nature
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of the diffusion equation for inhomogeneous media [3]. For
the same reason, one should anticipate the results of stud-
ies on the blowtorch effect to be model-dependent.

Investigations on the blowtorch have been largely on
studying the influence of position-dependent temperature
on the steady-state relative populations of the energy min-
ima. Kinetic aspects of such systems are just beginning
to be addressed as they are related to the problem of
molecular motors [7]. There has been only one previous
work which explicitly studied the effect of blowtorch on
the equilibration rate by taking one physical model [8].
Although their results illustrate the role of the various
parameters describing the blowtorch, the supersymmetric
method used in that work is not as transparent (due to the
initial transformation used) as the conventional stochastic
methods used in dealing with similar problems.The main
purpose of this paper is to understand the extent to which
the equilibration is model-dependent in a more transpar-
ent way using the standard method of first passage time.
To this end, the kinetic aspects for the two physical mod-
els that used to be controversial – one originally suggested
by Landauer [9] and the other by van Kampen [4] – are
considered leaving the third model for future analysis. As
in the previous work [8], the blowtorch is mimicked by
considering the inhomogeneity to arise from local heat-
ing in one of the potential wells. We use the Brinkman’s
method [10] to get analytic expressions not only for the
equilibration rate but also for the individual escape rates
from the two wells. This enables us to clearly see how these
individual escape rates are affected by the blowtorch and
are reported for the first time in this paper.

The rest of this paper is organized as follows. In Sec-
tion 2, the rate equations that capture the late stage
dynamics of the population in each well will be derived
for two physical models, each described by their respec-
tive diffusion equations. In Section 3, considering a model
bistable potential and a temperature profile that mimics
a simple hot region, we derive analytic expressions for the
escape and equilibration rates for both models. Section 4
discusses the results along with comparison to the previ-
ous work [8]. We summarize and conclude in Section 5.

2 Rate equations

Motion of a Brownian particle in a bistable potential at
its late stage of evolution involves, beyond the local fluc-
tuations about the minima, jumps of the particle from one
well to the other. When the barrier height separating the
two wells is high compared to the thermal energy, these
jumps are rare and take place on timescales very much
greater than the timescales for local fluctuations. Under
these conditions, we can coarse-grain the spatial region
into two, corresponding to the two wells of the potential,
and keep track of the particle’s probabilities in the left-
and right-wells as time flows. This leads to the rate equa-
tions for these probabilities. We derive the rate equations
starting from their corresponding diffusion equations for
two inhomogeneous physical models.

2.1 van Kampen’s model

This model, which we call van Kampen’s model, considers
motion of noninteracting Brownian particles in an inho-
mogeneous medium with a high friction. Starting from
the one dimensional Kramers’ equation and utilizing the
general method for eliminating fast variables [11,12], van
Kampen arrived at the diffusion equation for this sys-
tem [4]. Later on, Jayannavar and Mahato [13] also ar-
rived at the same diffusion equation for the same system
starting from a microscopic treatment where they took
the thermal bath as a set of harmonic oscillators. This
diffusion equation is given by

∂P (x, t)
∂t

=

∂

∂x

[
µ(x)V ′(x)P (x, t) + µ(x)

∂

∂x
(kBT (x)P (x, t))

]
. (2)

Note that, in this model, the expression for the diffusion
term is neither of the first nor of the second type as sug-
gested above.

The steady state probability distribution for this dif-
fusion equation, equation (2), is given by

Pss(x) =
N

T (x)
exp

[
−
∫ x V ′(x̃)

kBT (x̃)
dx̃
]
, (3)

where N is normalization constant. In the absence of ex-
ternal potential, the dependence of Pss on the tempera-
ture, i.e. Pss ∝ 1

T (x) , shows that at steady state a hot
region is less populated than a relatively cold region of
the same width. Such equilibration process can be seen to
arise via pressure equilibration [14]. On the other hand,
the effect of the external potential, V (x), on the steady
state distribution of the system is fully accounted for by
the exponential factor in the equation (Eq. (3)).

Consider a bistable potential where A and C desig-
nate the respective points of the left- and right-minima
while B designates the barrier maximum and positioned
so as to coincide with x = 0. The dynamics for van
Kampen’s model is governed by the diffusion equation,
equation (2), given above which can be expressed as a
continuity equation

∂P (x, t)
∂t

= −∂J(x, t)
∂x

(4)

where J(x, t) is the current density given by

J(x, t) = −µ(x)
[
V ′(x)P (x, t) +

∂

∂x
(kBT (x)P (x, t))

]
.

(5)

We follow the Brinkman’s method [10] to get the rate
equations for the populations in the left- and right-
wells. We introduce the coarse-grained variables, nA(t)
and nC(t), that describe the populations in the left- and
right-wells, respectively, defined as

nA(C)(t) =
∫ 0(∞)

−∞(0)

P (x, t)dx. (6)
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Here, the integral with the limits
∫ 0

−∞ is for nA(t) while
the integral with the limits

∫∞
0

is for nC(t). If J(x, t) is
multiplied by a quantity Q(x) defined as

Q(x) ≡ exp
[∫ x

xA

V ′(x̃)
kBT (x̃)

dx̃
]

(7)

and integrated from xA to xC , one obtains the relation

P (xC , t)kBT (xC)Q(xC)− P (xA, t)kBT (xA) =

−
∫ xC

xA

J(x, t)Q(x)
µ(x)

dx. (8)

For high barrier, the integral on the right side of equa-
tion (8) can be simplified by assuming that the major
contribution to the integral arises from the region near
the top of the barrier. On the other hand, J(x, t) is very
nearly constant in this region so that we can replace its
value by J(0, t). Hence, we get

J(0, t) =
P (A, t)TA − P (C, t)TCQ(C)∫ C

A
Q(x)
µ(x) dx

· (9)

Here, A(C) stands for xA(C) and kB is set to unity from
now onwards. During late stages of the evolution, i.e. be-
yond the time required for local equilibration in each well,
P (x, t) can be expressed as

P (x, t) = ρ(t)Pss(x) (10)

where ρ(t) is essentially constant within each well, but
keeps track of leakage across the barrier. Lastly, using
equations (3, 6) and (10) in equation (9) we get the rate
equations for the two populations as

dnA
dt

= −λV
AnA(t) + λV

CnC(t),

dnC
dt

= λV
AnA(t)− λV

CnC(t) (11)

where

λV
A(C) =

DA(C)∫ C
A

µA(C)Q(x)

µ(x) dx
∫ 0(∞)

−∞(0)

TA(C)

T (x)Q(x)dx
· (12)

The superscript ‘V’ above the λ’s is used to denote
van Kampen’s model while superscript ‘L’ will be used
later to denote another model called Landauer’s model. λA
and λC are the escape rates of the particles from left-well
to right-well and vice versa, respectively. The eigenval-
ues of the coefficient matrix for the rate equations, equa-
tion (11), are 0 and −

(
λV
A + λV

C

)
. Therefore, the relax-

ation or the equilibration rate, λV
eq, is just the sum of the

two escape rates; i.e., λV
eq = λV

A + λV
C .

2.2 Landauer’s pipe model

This model, originally suggested by Landauer [9], consists
of a very narrow pipe, radius ε, filled with Knudsen gas. As

the molecules of the gas move through the pipe they get
thermalized by colliding with the wall whose temperature
varies along the pipe. They are also under an external po-
tential field, V (x). Starting from the Kramers equation for
the distribution function of the molecules and taking the
limit ε → 0, van Kampen [5] used singular perturbation
method to arrive at the corresponding diffusion equation,
which is given by

∂P (x, t)
∂t

=
∂

∂x

[
µ(x)V ′(x)P (x, t) +

∂

∂x
(D(x)P (x, t))

]
,

(13)

where µ(x) = 8ε

3
√

2πT (x)
is the mobility of the molecules. In

this model, it is worth noting that the diffusion term is of
the first type as suggested above. The stationary solution
of equation (13) is

Pss(x) =
N√
T (x)

exp
[
−
∫ x V ′(x̃)

T (x̃)
dx̃
]
. (14)

In the absence of external potential, the dependence of
Pss(x) on the temperature, i.e. Pss ∝ 1√

T (x)
, explains

the fact that the speed of the molecules is proportional
to
√
T (x). Such equilibration process can be seen to arise

via temperature equilibration [15] and tells us that the
molecules in the hot region are weakly depleted compared
to those of van Kampen’s model.

Following identical procedures as in the previous sub-
section, the rate equations for Landauer’s pipe model are

dnA
dt

= −λL
AnA(t) + λL

CnC(t),

dnC
dt

= λL
AnA(t)− λL

CnC(t) (15)

where

λL
A(C) =

DA(C)(∫ C
A Q(x)dx

)(∫ 0(∞)

−∞(0)

√
TA(C)√

T (x)Q(x)
dx
) · (16)

Hence, the equilibration rate is once again the sum of the
individual escape rates.

3 Escape rates for model potential
with a hot region

Now, by using the general expressions for the escape and
equilibration rates and taking a specific model potential
with a hot region, we will obtain closed form expressions
for the rates. This will allow us to understand the extent to
which the effect of the hot region on these rates is model-
dependent.

Our model potential is a symmetric W-potential of
barrier height V0 and having the same magnitude in slope
everywhere. The distance between the minima is 2L (see
Fig. 1a). The temperature profile is piece-wise constant
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Fig. 1. Plots of V (y) and T (y) versus y are, respectively, shown
in (a) and (b). Note that y is a dimensionless variable such that
x = yL.

with the hot region placed somewhere between the bar-
rier maximum and the right minimum of the potential
(see Fig. 1b), and given by the relation

T (x) = T0 + sT0 [Θ(x− (p− 0.5w)L)
− Θ(x− (p+ 0.5w)L)] . (17)

Here Θ(x) is the Heaviside function, T0 is the background
(constant) temperature and sT0 is the excess temperature
such that the temperature, T , in the hot region is T =
T0(1 + s). In addition to the parameter s that quantifies
the strength of the hot region (in units of T0), parameters
w and p quantify, respectively, its width and position of its
mid-point from the barrier top (in units of L).

The previous blowtorch work on the kinetic aspect of a
bistable system [8] used van Kampen’s model. In addition,
it considered the mobility to be the same everywhere. Here
also, for the sake of comparison, we will confine to the
constant mobility case for the van Kampen model.

For such a case, the expressions for the escape rate
from the left-well for both models, λV

A and λL
A given, re-

spectively, in equations (12, 16), will be identical. On the
other hand, the expressions for the escape rate from the
right-well for the two models are different from each other.
In order to clearly see the effect of the hot region on the es-
cape and equilibration rates, we define a quantity, ΛA(C),
called enhancement factor for each escape rate from left-
(right-)well as

ΛA(C) =
λA(C)

λ0
A(C)

· (18)

Here λ0
A(C) stands for escape rate from left-(right-)well

in the absence of the hot region. For the symmetric W-
potential, λ0

A = λ0
C , and is given by

λ0
A = λ0

C = D0

( v

2L

)2

e−v, (19)

where v ≡ V0
T0

and D0 is the diffusion coefficient out-
side (or in the absence of) the hot region. The corre-
sponding enhancement factor for the equilibration rate

Fig. 2. Plot of ΛV
eq as a function of position, p, of the hot

region for v = 20, w = 0.1, and s = 1

will then be Λeq = 1
2 (ΛA + ΛC). Using the particular W-

potential along with the temperature profile as given in
equation (17), we get the following approximate closed
form expressions for the enhancement factors, ΛA(C), for
the corresponding models:

ΛA = ΛV
A = ΛL

A =
1

1 + sg(s, w)e−pv
, (20)

ΛV
C =

e2sσ

1 + sg(s, w)e−pv
= e2sσΛA, (21)

ΛL
C =

ΛV
C

1 +
(√

1 + s− 1
)
g(s, w)e−(1−p)v , (22)

where σ ≡ wv
2(1+s) and

g(s, w) = esσ sinh(σ). (23)

Note that the parameters w and p take values between 0
and 1 (in fact, w

2 ≤ p ≤ (1 − w
2 )), while the parameter

s takes positive values for a hot zone and negative values
(but greater than −1) in case we have a cold zone.

4 Results and discussion

First of all, the enhancement factor for the equilibration
rate for the van Kampen’s model, ΛV

eq = 1
2 (ΛV

A + ΛV
C), is

given by

ΛVeq =
1 + e2sσ

2 + 2sg(s, w)e−pv
· (24)

This is exactly identical with the expression found in the
previous work [8]. It is worth noting that the two different
approaches to the problem give us exactly the same result.
For the sake of completeness, we have shown a plot of ΛV

eq

versus p in Figure 2. It clearly shows that the equilibration
rate saturates as the hot zone is placed further away from
the barrier top as has been pointed out in the previous
work [8].
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Fig. 3. Plot of ΛA as a function of strength, s, of the hot
region for w = 0.3, p = 0.15 and v = 10.
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Fig. 4. Plot of ΛA as a function of width, w, of the hot region
for s = 1, p = 0.5w and v = 10.

Let us now see how the individual escape rates from
each well are affected by the hot region which is placed in
the right-well.

The value for the enhancement factor from the left-
well, ΛA, which is identical for both models and given
by equation (20), clearly shows that the presence of the
hot zone diminishes the escape rate from the left-well.
However; the hot zone’s diminutive role becomes negligible
when it is placed away from the barrier top because of the
exponential term, e−pv, appearing in the denominator. In
fact, when the hot zone is placed at the top, i.e. p =
w
2 , g(s, σ) tends to 1

2 [16] so that ΛA takes the smallest
value of about 2

2+s . On the other hand, when the hot zone
is placed further away from the barrier top, ΛA goes to
unity. The decreasing effect of the hot zone on the escape
rate from the left-well is illustrated by the plots of ΛA
as functions of s and w, respectively, shown in Figures 3
and 4. In Figure 4, the left-side of the hot zone is kept
fixed touching the barrier top so that as w is varied p also
varies such that p = 1

2w.
On the other hand, the enhancement factor from the

right-well for van Kampen’s model, ΛVC , given by equa-
tion (21) is composed of two products; i.e., ΛA and an ex-
ponential factor, e2sσ. Taking note of the behavior of ΛA
discussed above, this means that the escape rate from the
right-well gets enhanced by the exponential factor (of e2sσ)
when the hot zone is placed close to the bottom. However,
if the hot zone is placed near the barrier top that (expo-

0.2 0.4 0.6 0.8
3

4

5

Fig. 5. Plots of ΛV
C (solid line) and ΛL

C (dashedline) as a func-
tion of position, p, of the hot region for w = 0.3, s = 1 and
v = 10.
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Fig. 6. Plots of ΛV
C (solid line) and ΛL

C (dashed line) as a
function of width, w, of the hot region for s = 1, p = 0.5 and
v = 10.

nential) amount of the enhancement gets decreased by a
factor of about 2

2+s . Hence, the effect of the hot zone on
ΛV
C is maximum when it is placed at the bottom. Figure 5

illustrates this by plotting ΛV
C versus p.

The same enhancement factor for Landauer’s model,
ΛL
C , is a combination of two products: ΛV

C and a diminu-
tive term, 1

1+(√1+s−1)g(s,w)e−(1−p)v . This term takes a min-

imum value of about 2
1+
√

1+s
when the hot zone is placed

close to the bottom. On the other hand, when the hot zone
is moved towards the barrier top it decays away to unity.
(Note the exponential term e−(1−p)v.) Hence, ΛL

C behaves
as ΛV

C when the hot zone is placed away from the bottom
but decays to a lower value when placed near the bottom.
This leads to the existence of an intermediate position of
the hot zone at which ΛL

C takes an optimum value. In fact,
the optimum value occurs at

p =
1
2

+
1
2v
(
log(1 +

√
1 + s)

)
, (25)

which, for high barrier, is practically at the mid-point be-
tween the barrier top and the right-minimum. To illus-
trate this further, we plot the dependence of ΛL

C on p in
the same figure above (Fig. 5) where we have plotted ΛV

C
versus p.

Figure 6 shows plots of ΛV
C and ΛL

C as a function of w.
The exponential increase in the enhancement factor with
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Fig. 7. Plots of ΛV
C (solid line) and ΛL

C (dashed line) as a
function of strength, s, of the hot region for w = 0.3, p = 0.5
and v = 10.

increase in hot zone width, w, is clearly visible. Lastly,
Figure 7 shows plots of ΛV

C and ΛL
C versus s where we get

a monotonous increase of the enhancement factors with
increase in s.

5 Summary and conclusion

The Brinkman’s method has enabled us to calculate the
individual escape rates as functions of the hot zone pa-
rameters in a direct and transparent way. In principle,
one could use supersymmetric method to get these escape
rates. To do so, however, one has to setup a single-well po-
tential with a runaway on one side and place the hot zone
within the well to calculate λC and then place the hot zone
outside the well to calculate λA. This requires carrying
out a separate calculation to obtain the individual escape
rates. Hence, the Brinkman’s method is better-suited and
is also more transparent for calculating the escape rates.

The effect of the hot zone on the escape rates can be
summarized by the value the corresponding enhancement
factors take around the two extreme positions; i.e., top
and bottom of the right-well. This is tabulated below.

p ΛA ΛV
C ΛL

C

w
2

2
2+s

2e2sσ

2+s
2e2sσ

2+s

1− w
2 1 e2sσ 2e2sσ

1+
√

1+s

As has been mentioned in the discussion above, the escape
rates from the left-well are identical for the two physical
models while the escape rates from the right-well show
qualitatively different behavior from each other particu-
larly as a function of the position of the hot zone.

In comparing the two models, we have limited our-
selves to the constant mobility case for van Kampen’s
model. On the other hand, for Landauer’s model mobil-
ity is always proportional to T−

1
2 . It would be interesting

to consider the general position-dependent mobility case
for van Kampen’s model and study the kinetic aspect of
Landauer’s blowtorch effect.

On the other hand, it is worth to look for actual sys-
tems where these theoretical results could be checked.
We believe that microdevices such as Brownian heat en-
gines [7] are possible candidates for checking these theo-
retical results. Even design of such devices that operate
either efficiently or optimally demand knowledge of these
results. One may need a hot reservoir, i.e. a hot region, of
the right strength and width placed at an appropriate po-
sition to get an efficiently or optimally working Brownian
heat engine instead of attaching one well to a hot and the
other to a cold reservoir.

Lastly, we would like to mention that we do not yet
have a convincing physical argument as to why the two
models differ from each other.
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